Pythagoras Theorem class 10th
Pythagoras theorem:-
Prove that:- BC2 = AB2 + AC2
Construction:- AD⏊BC (in figure)
Proof:-In △ABD and △ACB
∠B =∠B (common)
and, ∠ADB =∠CAB (90°)
Now, △ABD〜△CBA
(AA similarity)
so, AB/BC=BD/AB
(Corresponding parts of congruent triangle)
or, AB2= BC.BD........(1)
In △ACD and △ACB
∠C =∠C (common)
and, ∠ADC =∠CAB (90°)
Now, △ABD〜△CBA (AA similarity)
so, AC/BC=CD/AC
(Corresponding parts of congruent triangle)
or, AC2= BC.CD........(2)
Adding (1) and (2), we have:
AB2+AC2=BC.BD+BC.CD
AB2+AC2=BC(BD+CD)
AB2+AC2=BC.BC
AB2+AC2=BC2
BC2=AB2+BC2
BC2=AB2+AC2
Hence, theorem proved
Construction:- AD⏊BC (in figure)
Proof:-In △ABD and △ACB
∠B =∠B (common)
and, ∠ADB =∠CAB (90°)
Now, △ABD〜△CBA
(AA similarity)
so, AB/BC=BD/AB
(Corresponding parts of congruent triangle)
or, AB2= BC.BD........(1)
In △ACD and △ACB
∠C =∠C (common)
and, ∠ADC =∠CAB (90°)
Now, △ABD〜△CBA (AA similarity)
so, AC/BC=CD/AC
(Corresponding parts of congruent triangle)
or, AC2= BC.CD........(2)
Adding (1) and (2), we have:
AB2+AC2=BC.BD+BC.CD
AB2+AC2=BC(BD+CD)
AB2+AC2=BC.BC
AB2+AC2=BC2
BC2=AB2+BC2
BC2=AB2+AC2
Hence, theorem proved
Comments
Post a Comment